ENERGY EFFICIENT BUILDING DESIGN

High impact measures for hot climate zones

Hot arid climate (semi-arid)

Cairo, Dakar, Doha, Dubai, Hermosillo, Kuwait, Lima, Marrakech, Monterrey, Riyadh

Massive or highly insulated building, airtight, blocking heat, with natural ventilation at night and mechanical cooling.

Tropical wet and dry climate (savannah)

Abuja, Bangkok, Brasília, Cancún, Dhaka, Ho Chi Minh City, Mumbai, Rio de Janeiro

Light or mid-weight building, with natural ventilation all year around.

Tropical wet climate (rainforest)

Jakarta, Kampala, Kuala Lumpur, Recife, Singapore

Massive or highly insulated building, airtight, with natural ventilation and mechanical cooling during hot periods.

Humid subtropical climate

Delhi, Durban, Guangzhou, Hanoi, São Paulo, Porto Alegre, Shanghai, Sydney, Tokyo

Light or medium-weight building, well insulated, with natural ventilation in summer and comfortable in short cool winters.

Mediterranean climate

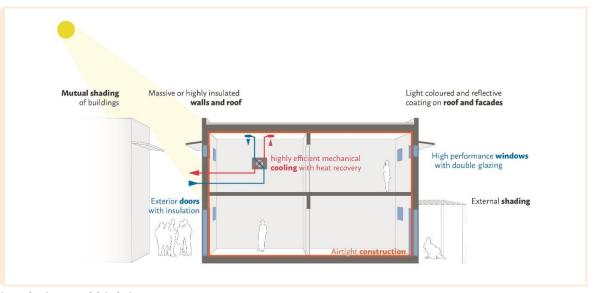
Algiers, Beirut, Casablanca, Rabat, Tel Aviv, Tashkent, Tunis

Massive building, blocking heat during the day and naturally cooling down at night.

HOT ARID CLIMATE

High impact measures for hot climate zones

Hot arid climate (semi-arid)



Very hot daytime temperatures and, depending on the altitude and latitude, huge temperature differences between day and night.

Building Design

Massive or highly insulated building, airtight, to hold temperature longer and to create a natural barrier between interior and exterior temperatures.

Building design and high impact measures

Orientation:

 Buildings are oriented from east to west along the sun path, exposing only small facades to the sun.

Shape:

 Buildings are compact and close to each other to expose few façades to the sun and to provide shade.

Openings:

 Openings (doors, windows, vents) face north or south to reduce solar radiation. **Highly efficient building envelope** without thermal bridges, superior windows, mechanical ventilation with heat recovery, highly efficient thermal insulation and airtight construction.

Walls

- Walls are thick and made of massive construction materials or of composite materials with high thermal insulation.
- Bright and reflective coating on all exterior façades to reflect high solar radiation.
- Exterior doors with thermal insulation and airtight seals.

Roofs

- Thick roofs made of massive construction materials or of composite materials with high thermal insulation.
- Bright and reflective coating to reflect solar radiation.
- Roof overhangs to shade building façades and windows.

Windows

- High performance and airtight windows.
- Double glazing and low emissivity glass.
- Window frames with thermal insulation and airtight seals.
- Exterior movable shading on windows blocking solar radiation in summer.

Natural ventilation

 Should be used at night during the dry season to reduce cooling needs during the day

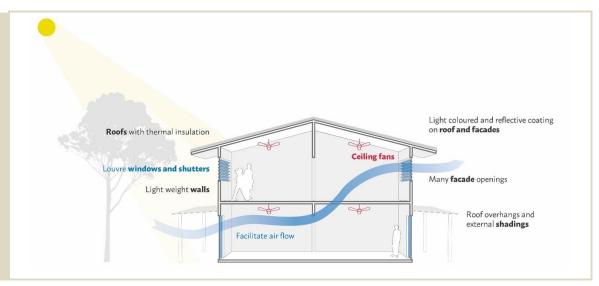
Mechanical cooling

- Highly efficient mechanical cooling system or devices for active cooling.
- Ventilation with heat recovery.
- If possible, installation of photovoltaic system on roofs or façades to generate electricity for mechanical cooling.
- Cooling systems without harmful refrigerants, such as CFCs and HCFCs.

TROPICAL WET AND DRY CLIMATE

High impact measures for hot climate zones

Tropical wet and dry climate (savannah)



Warm with less rainfall than tropical wet climate or with more pronounced dry season.

Building Design

Light or mid-weight building with openings for natural ventilation, improving thermal comfort and avoiding the need for mechanical cooling.

Building design and high impact measures

Orientation:

 Buildings are oriented from east to west along the sun path, exposing only small facades to the sun.

Shape:

 Greater distances between buildings and a more spacious arrangement for good air circulation.

Openings:

 Openings (doors, windows, vents) face north or south to reduce solar radiation. **Open building envelope** with well insulated roof, many façade openings for natural ventilation. Building is compact and has an open layout and often an adjacent or inner courtyard combining open and closed spaces.

Walls

- Walls are light or midweight with plenty of openings and vents for ventilation.
- Bright and reflective coating on all exterior façades to reflect high solar radiation.

Roofs

- Roofs have high thermal insulation.
- Bright and reflective coating to reflect solar radiation.
- Roof overhangs to shade building façades and windows.

Windows

- Louvre windows or shutter windows for continuous air flow.
- Exterior shading on windows blocking solar radiation.
- **Minimise glazing** area to east and west façades.

Natural ventilation

- Open building design ensures constant natural ventilation.
- This design is usually applied in regions with frequent local air currents making high temperatures and humidity bearable.

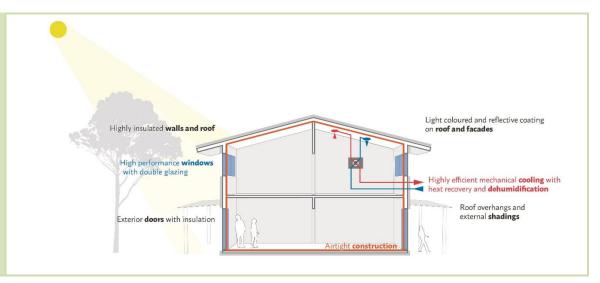
Mechanical cooling

• **Ceiling fans** can be used to increase comfort during temperature peaks.

TROPICAL WET CLIMATE

High impact measures for hot climate zones

Tropical wet climate (rainforest)



Constant hot temperature throughout the year, calm winds, short dry season and wet season with frequent and heavy rainfall.

Building Design

Massive or highly insulated building, airtight to mechanically cool the interior in the most efficient way.

Building design and high impact measures

Orientation:

 Buildings are oriented from east to west along the sun path, exposing only small facades to the sun.

Shape:

 Greater distances between buildings for good air circulation. For a closed building design, buildings are compact to reduce external façade surfaces.

Openings:

 Openings (doors, windows, vents) face north or south to reduce solar radiation. **Highly efficient building envelope** without thermal bridges, superior windows, mechanical ventilation with heat and energy recovery, highly efficient thermal insulation and airtight construction.

Walls

- Thick walls made of massive construction materials or of composite materials with high thermal insulation.
- Bright and reflective coating on all exterior façades to reflect high solar radiation.
- Exterior doors with thermal insulation and airtight seals.

Roofs

- Thick roofs made of massive or composite materials with high thermal insulation.
- Bright and reflective coating to reflect solar radiation.
- Roof overhangs to shade façades and windows.
- Separate ceiling, forming a ventilated attic space.

Windows

- High performance and airtight windows.
- Double glazing and low emissivity glass.
- Window frames with thermal insulation and airtight seals.
- Exterior shading on windows blocking solar radiation.

Natural or mechanical ventilation

• **Fans** help reducing cooling needs by improving thermal comfort.

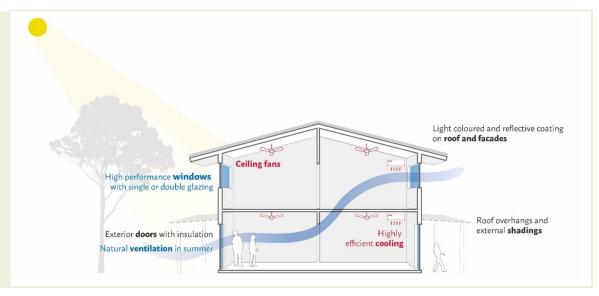
Mechanical cooling

- Highly efficient mechanical cooling system or devices for active cooling with dehumidification.
- Ventilation with heat recovery.
- If possible, installation of photovoltaic system on roofs or façades to generate electricity for mechanical cooling.
- Cooling systems without harmful refrigerants such as CFCs and HCFCs.

HUMID SUBTROPICAL CLIMATE

High impact measures for hot climate zones

Humid subtropical climate



Long hot and humid summers, and short but cool to mild winters.

Building Design

Light or medium-weight building with openings for natural ventilation in summer, and well insulated to keep interior temperatures during short but cool winters.

Building design and high impact measures

Orientation:

 Buildings are oriented from east to west along the sun path, exposing only small façades to the sun.

Shape:

 Greater distances between buildings and a more spacious arrangement for good air circulation.

Openings:

 Openings (doors, windows, vents) face north or south to reduce solar radiation. **Efficient building envelope** with well insulated roof, walls with thermal qualities or thermal insulation and high-quality windows for natural ventilation in summer. Building has an open layout, is little, compact and often with an adjacent or inner courtyard, combining open and closed spaces.

Walls

- Light or mid-weight walls with thermal insulation.
- Bright and reflective coating on all exterior façades to reflect high solar radiation.

Roofs

- Roofs have high thermal insulation.
- Bright and reflective coating to reflect solar radiation.
- Roof overhangs to shade building façades and windows.

Windows

- **High-quality windows** with single or double glazing and low emissivity glass.
- Exterior moveable shading on windows blocking solar radiation in summer.

Natural ventilation and mechanical heating

- Summer: Open building envelope for natural ventilation; mechanical ventilation can be an additional option during temperature peaks.
- Winter: Closed building and mechanical or passive solar heating.

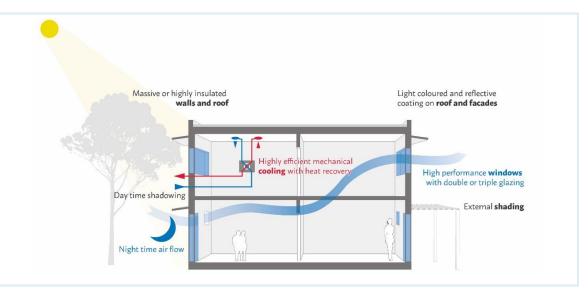
Mechanical cooling

 Ceiling fans can be an option to increase comfort during temperature peaks.

MEDITERRANEAN CLIMATE

High impact measures for hot climate zones

Mediterranean climate



Hot daytime temperatures and, depending on the altitude and latitude, huge temperature differences between day and night.

Building Design

Massive or highly insulated building to block the heat during the day and slowly release it during the night, thus compensating high temperature variations.

Building design and high impact measures

Orientation:

 Buildings are oriented from east to west along the sun path, exposing only small façades to the sun.

Shape:

 Buildings are compact and close to each other to expose few façades to the sun and to provide shade.

Openings:

 Openings (doors, windows, vents) face north or south to reduce solar radiation. **Highly efficient building envelope** without thermal bridges, superior windows, highly efficient thermal insulation and airtight construction.

Walls

- Thick walls made of massive construction materials or of composite materials with high thermal insulation.
- Bright and reflective coating on all exterior façades to reflect high solar radiation.
- Exterior doors with thermal insulation and airtight seals.

Roofs

- Thick roofs made of massive or composite materials with high thermal insulation.
- Bright and reflective coating to reflect solar radiation.
- Roof overhangs to shade building façades and windows.

Windows

- High performance and airtight windows.
- Double glazing and low emissivity glass.
- Window frames with thermal insulation and airtight seals.
- **Exterior shading** on windows blocking solar radiation.

Natural ventilation

- Building envelope (windows, shading) closed during at day to block heat.
- Windows **open during the night** to cool building down naturally.

Mechanical cooling

- Mechanical ventilation can be an additional option only during hot summer months.
- If so, highly efficient mechanical cooling system or devices for active cooling.